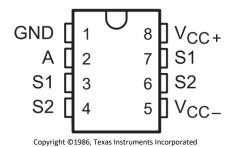
- Switch ±10-V Analog Signals
- TTL Logic Capability
- 5-to 30-V Supply Ranges
- Low (100 Ω) On-State Resistance
- High (1011 Ω) Off-State Resistance
- 8-Pin Functions

Copyright ©1986, Texas Instruments Incorporated

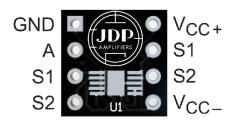
Description

The TL604JDP is a plug and play modern replacement for the original TL604, on an 8 pin adaptor board. The board is configured for up to 4 different modern switch ICs to guard against future obsolescence. The specifications below are selected as the worst of the 4 different ICs.

Original text from Texas Instrument's 1986 datasheet:

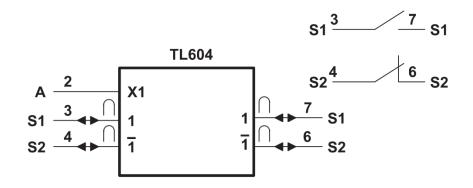

"The TL604 is a monolithic P-MOS analog switch that provide fast switching speeds with high $r_{\rm off}/r_{\rm on}$ ratio and no offset voltage. The p-channel enhancement-type MOS switches accept analog signals up to ± 10 V and are controlled by TTL-compatible logic inputs. The monolithic structure is made possible by BI-MOS technology, which combines p-channel MOS with standard bipolar transistors.

These switches are particularly useful in military, industrial, and commercial applications such as data acquisition, multiplexers, A/D and D/A converters, MODEMS, sample-and-hold systems, signal multiplexing, integrators, programmable operational amplifiers, programmable voltage regulators, crosspoint switching networks, logic interface, and many other analog systems.


The TL604 is a dual complementary SPST switch with a single control input. The TL604 is characterized for operation from -40°C to +125°C."

Copyright ©1986, Texas Instruments Incorporated

ORIGINAL TI PACKAGE (TOP VIEW)



ADAPTOR PACKAGE (TOP VIEW)

Copyright © 2023, JDP Amplifiers

FUNCTION TABLE

INPUT	ANALOG SWITCHES			
Α	S1	S2		
Н	On (closed)	Off (open)		
L	Off (open)	On (closed)		

Copyright ©1986, Texas Instruments Incorporated

Absolute Maximum Ratings over operating free-air temperature range

Supply voltage, V _{CC+} (see Note 1)	36 V
Supply voltage, V _{CC}	
V_{CC+} to V_{CC-} supply voltage differential	
Control input voltage	
Switch off-state voltage	
Switch on-state current	39 mA
Operating free-air temperature range:	40°C to 125°C

 $\label{eq:NOTE 1:All voltage values} \ \text{are with respect to network ground terminal.}$

Recommended Operating Conditions

PARAMETER	MIN	TYP MAX	UNIT
Supply voltage, V _{CC+}	9	36	V
Supply voltage, V _{CC} -	0	-36	V
V _{CC+} to V _{CC-} supply voltage differential	9	36	V
High-level control input voltage, V _{IH}	2.0	V _{CC+}	V
Low-level control input voltage, V _{IL}	V _{CC} -	0.8	V
Voltage at any analog switch terminal	V _{CC} -	V_{CC+}	V
Switch on-state current		39	mA
Operating free-air temperature, T _A	-40	125	°C

Electrical Characteristics:

 V_{DD} = +15 V ± 10%, V_{SS} = -15 V ±10%, GND = 0 V (unless otherwise noted) Typical at V_{DD} = +15 V, V_{SS} = -15 V, T_A = 25°C (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
I _{IH} High-level input current			0.4	1.2	μΑ
I _{IL} Low-level input current		-100	- 5		pА
I _{off} Switch off-state current	TA = -40°C to 125°C	-20		20	nA
r _{on} Switch on-state resistance	VS = ±10 V	2	13.5	23	Ω
Con Switch on-state input capacitance	VS = 0 V, f = 1 MHz, 25°C	44		145	pF
C _{off} Switch off-state input capacitance		12		45	pF
ICC+ Supply current from V _{CC} +			45	80	μΑ
ICC- Supply current from V _{CC} -		1	5	35	μΑ
t _{off} Switch turn-off time		100	163	242	nS
t _{on} Switch turn-on time		80	185	313	nS

Variations:

Due to 4 different ICs being specified, this adaptor may arrive in any of the 4 following pictured configurations. Notice that two of the configurations have the IC on top, and two of the configurations have the IC on the bottom. Regardless of which variation you receive, these are all interchangeable with each other and with the original Texas Instruments TL604 part. The above specifications have been written taking the worst value of all 4 ICs in order to ensure that the part you receive will meet or exceed the specifications.

Alternate Part Number:

This part was used in Peavey amplifiers under their own part number SN99661.

